LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2015

MT 5510 - STATICS

Date: 11/11/2015	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		

PART-A

Answer ALL the questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. State Lami's theorem.
- 2. Prove that $R = 2P\cos\frac{r}{2}$ and $\tan_{\pi} = \tan\frac{r}{2}$ if P and Q are equal in magnitude.
- 3. Define a couple.
- 4. Define dynamical friction.
- 5. Find a gravity of compound body.
- 6. Define the centre of gravity of a rigid body.
- 7. State the Hooke's law.
- 8. Define neutral equilibrium.
- 9. Define catenary.
- 10. Define span and sag.

PART-B

Answer any FIVE questions:

 $(5 \times 8=40 \text{ marks})$

- 11. The magnitude of the resultant of two given forces of magnitudes P and Q is R. the magnitude of the resultant is doubled either when the force of magnitude Q is doubled or reversed in direction. Prove that $P: Q: R = \sqrt{2}: \sqrt{3}: \sqrt{2}$.
- 12. State the laws of friction.
- 13. A weight W is supported by friction on a plane inclined at an angle to the horizon. Show that it cannot be moved up the plane by any horizontal force less than Wtan2.
- 14. Find the centre of gravity of a sector of a uniform thin circular plate subtending angle 2r at the centre.
- 15. A string of length a forms the shorter diagonal of a rhombus of four uniform rods, each of length b and weight W which are hinged together. If one of the rods be supported in horizontal position, prove that the tension in the string is $\frac{2W\left(2b^2-a^2\right)}{b\sqrt{4b^2-a^2}}.$
- 16. Two equal uniform rods are firmly joined at one end do that the angle between them is Γ and they rest on a smooth sphere of radius r. Show that they are in a stable or unstable equilibrium according as the length of a rod is greater or less than $4r \csc \Gamma$.
- 17. State and prove polygon law of forces.

18. A string of length l, hangs between two points, not in the same vertical line, and the tangets at the end points are inclined at angles Γ and s with the horizontal. Show that the height of

one extremity above the other is $\frac{l\sin\frac{r+s}{2}}{\cos\frac{r-s}{2}}$ the two extremities being the same side of the

vertex of the Catenary.

PART-C

Answer any TWO questions:

(2x 20=40 marks)

19. (a) Two weights P and Q are suspended from a fixed point O by strings OA and OB and are kept apart by a light rod AB. If the strings OA and OB make angles and with the rod, show that the angle θ which the rod makes with the vertical is given by

$$\tan_{"} = \frac{P+Q}{Q \cot s - P \cot r}.$$
 (15)

- (b) Two forces acting on a particle are such that if the direction of one of them is reversed, the direction of the resultant is turned through a right angle.Prove that the forces must be in equal in magnitude.(5)
- 20. (a) State and prove Varignon's theorem on moments. (10)
 - (b) A ladder which stands on a horizontal ground leaning against a vertical wall is so loaded that its centre of gravity is at the distances a and b from the lower and upper ends respectively. Show that if the ladder is in limiting equilibrium, its inclination $_{n}$ to the horizontal is given by $\tan_{n} = \frac{a b c}{(a + b)}$ where and are the coefficients of friction between the ladder and the ground and the wall respectively. (10)
- 21. (a) State and prove the principle of virtual work for a system of coplanar forces acting on a rigid body. (10)
 - (b) A uniform chain of length 2l has its ends attached to two points in the same horizontal line at a distance 2a apart .If l is only a little greater than a, show that the tension in the chain is approximately equal to a weight of the chain of length $\sqrt{\frac{a^3}{6(l-a)}}$ and the sag or depression of the lowest point of the chain below its end is $\frac{1}{2}\sqrt{6a(l-a)}$ nearly. (10)
- 22. Derive the intrinsic equation of catenary and also derive in Cartesian form. (20)

\$\$\$\$\$\$\$